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Perturbation theory for solitons of the Manakov system
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We formulate the Kaup-Karpman-Maslov-type perturbation theory for solitons connected with the 333
matrix spectral problems, using the example of the perturbed Manakov system. The adiabatic approximation
and first-order corrections to the soliton shape are considered. The self-orientation effect of the soliton polar-
ization dynamics caused by a cubic perturbation is described. It is also shown that the combined action of
linear and cubic perturbations provides existence of a stationary regime for the soliton propagation with the
single fixed amplitude and that the corrections to the soliton shape from linear and cubic perturbations partially
compensate each other.@S1063-651X~97!16405-4#

PACS number~s!: 03.40.Kf, 42.65.Tg
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I. INTRODUCTION

At the present time much attention is being paid to
investigation of optical soliton polarization dynamics. T
interest in the polarization effects is primarily caused by
necessity to take into account birefringence of real opt
fibers @1–9#. Single-mode optical fibers support two mod
of polarization due to linear birefringence combined w
weak intermodal dispersion. These modes are coupled
gether by means of the Kerr effect which stabilizes solito
against spreading due to dispersion and against broade
and splitting due to birefringence. Secondarily, polarizat
dynamics is closely related to the cross-phase modula
which, in many cases, leads to formation of the bound st
of solitons@4,5#. This effect has also attracted attention in
number of applications connected with pulse compress
@10#, short-pulse generation@11#, and wavelength-division
multiplexing@12#. Finally, we point out the connection of th
studied issue to the recent studies of optical domain w
separating the regions of different polarizations@13–15#.

Taking into account the polarization of an electroma
netic field, the propagation of light pulses in a Kerr mediu
is described by a system of coupled nonlinear Schro¨dinger
equations~CNLS! @8#. In general, such a system is nonint
grable in terms of the inverse scattering transform~IST!
method. Numerical simulations@2,3,16–18# have revealed a
much richer dynamics for CNLS, as compared with a sin
NLS equation, although, they do not provide as much u
versality as analytical methods.

There are different approaches to the analytical desc
tion of polarized~vector! soliton dynamics. One of the fre
quently used methods deals with variousAnsätzewhich re-
duce CNLS equations to a system of ordinary differen
equations@5,14,17–20#. The variational approach was su
cessfully applied in Refs.@21,22#. It permits us, in particular,
to obtain the conditions of resonance splitting of a tw
component soliton into two separating solitons of differe
polarizations. By means of the Lie group analysis, Alfin
et al. @23# found some exact solutions of CNLS with refe
551063-651X/97/55~6!/7626~10!/$10.00
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ence to the linear birefringence. At last, in Refs.@24,25#
some elements of perturbation theory for polarized solito
were developed. The idea of this approach is based on
fact that for some values of parameters the original CL
system transforms to the Manakov system@26#

iq1z1
1
2q1tt1~ uq1u21uq2u2!q150,

iq2z1
1
2q2tt1~ uq2u21uq1u2!q250, ~1.1!

which is integrable by IST method. Hereq1 andq2 are nor-
malized envelopes of the two modes of polarization,t and
z are, correspondingly, normalized time and distance al
the fiber. Under condition that terms violating the integrab
ity of Eq. ~1.1! are small, one can estimate their effect on t
initially unperturbed vector soliton in the framework of pe
turbation theory. It should be stressed that the Manakov s
tem is a good approximation to the real physical models.
example, Kaup and Malomed@27# have proved that such
phenomena as soliton trapping and daughter wave~shadow!
formation encountered in optical fibers are already contai
in the Manakov model. Moreover, in a recent paper@28# the
Manakov system was used to study the polarization sca
ing of soliton-soliton collisions.

Hence, from the point of view of an analytical approa
to investigation of polarized solitons, the use of the Manak
system as a zero-order approximation, followed by the
count of small nonintegrable corrections, is very promisin
Such an approach in the case of nonlinear equations i
grable by the 232 matrix version of the IST method~in
particular, the famous NLS equation! is based on the well-
known scheme by Kaup-Karpman-Maslov~KKM ! @29,30#.
At the same time, the formalism of perturbation theory f
soliton equations integrable by the 333 matrix version of
the IST method@e.g., the Manakov system~1.1!#, which
would be of the same completeness and convenience in
culation as the KKM scheme, has not been constructed.
reason for that is mainly the mathematical peculiarities of
spectral problems over the space of 232 matrices. Indeed
7626 © 1997 The American Physical Society
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55 7627PERTURBATION THEORY FOR SOLITONS OF THE . . .
one finds that the matrix Jost solutions to the spectral pr
lems of 232 matrix dimension possess definite analy
properties with respect to a spectral variable as a whole,
allowing us to use the methods of analysis in the comp
plane of the spectral variable directly. On the other ha
being turned to higher matrix dimensions, one faces
problem of indefinite analytic behavior of the matrix Jo
solutions. Hence, some preliminary manipulations with
Jost solutions have to be carried out to adapt the KKM
proach to higher matrix dimensions.

In the present paper we propose a simple formalism
perturbation theory to soliton equations associated with
333 matrix spectral problems, which is as efficient as
KKM method. Since the key element of the proposed f
malism is analytic behavior of the Jost-type functions,
Riemann-Hilbert~RH! problem~see, for example, Ref.@31#!
is the natural basis for our method. The first application
the RH problem to perturbed nonlinear equations associ
with the 232 matrix spectral problem was made by Kivsh
@32# for calculation of the first-order corrections to the so
ton of the Landau-Lifshitz equation. In Refs.@33# the possi-
bility of a purely algebraic calculation of higher-order co
rections to the NLS soliton on the basis of the RH probl
was pointed out and dynamics of a perturbed optical sol
in a fiber with combined resonant and nonresonant~cubic!
nonlinearities was described.

In Sec. II we summarize the results of the RH-based
proach to the unperturbed Manakov system. In particular,
give a simple derivation of the soliton solution. Th
perturbation-induced evolution equations for discrete sp
tral data are obtained in Sec III. On the basis of these eq
tions in Sec. IV, for the case of combined action of linear a
cubic perturbations to the Manakov system, we calcu
adiabatic corrections to the soliton parameters. We a
prove asymptotic stabilization of the polarization mod
which is dependent on the initial polarization state. Mo
over, we find the stationary regime of perturbed solit
propagation and the value of a steady-state soliton amplit
In Sec. V we calculate the first-order corrections to the s
ton shape and give evidence of partial compensation in
stationary regime of corrections caused by linear and cu
perturbations. In concluding Sec. VI we point out some wa
to generalize proposed soliton perturbation theory. The
pendix is devoted to detailed derivation of the equations
the perturbation-induced evolution of the discrete spec
data which are used in Sec. IV.

II. THE RIEMANN-HILBERT PROBLEM AND SOLITON
OF THE MANAKOV SYSTEM

The Manakov system~1.1! is integrable by means of th
IST method@26,31# and can be represented as a compati
ity condition for the following system of two linear matri
equations:

Ct5UC2 ikCA, Cz5VC2 ik2CA, ~2.1!

where

U5 i ~kA1Q!, V5 ik2A1 ikQ1 1
2AQt2

i

2
AQ2,
b-
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A5S 1 0 0

0 1 0

0 0 21
D , Q5S 0 0 q1*

0 0 q2*

q1 q2 0
D . ~2.2!

In other words, Eqs. ~1.1! are equivalent to
Ut2Vz1@U,V#50⇔ iQz2

1
2AQtt2AQ350 for all values

of the spectral variablek. The following analysis is based o
the RH problem associated with the spectral equation:

Ct5 ik@A,C#1 iQC. ~2.3!

In this connection we demonstrate below the way to obt
the soliton solution of the Manakov system within the R
framework and define the notations used.

Consider the spectral problem~2.3! with the potentialQ
defined in Eq. ~2.2!. We assume the functionsqj (t,z),
j51,2, belonging to the Schwarz space (qj→0 asutu→`).
Define the matrix Jost solutionsC6 of Eq. ~2.3! which sat-
isfy the asymptotic conditionsC6→1 for t→6`, 1 is the
unit matrix. The scattering matrixS(k) can be defined in
terms of the Jost solutions

C2~k,t!5C1~k,t!ES~k!E21, E[exp~ ikAt!.

The RH problem associated with the spectral equation~2.3!
can be derived in the following way@31#. Perform a factor-
ization of the scattering matrixS,

S15SS2 , ~2.4!

providing the entries of the matricesS6 are expressed with
out division in terms of the entries of the matrixS. In Ref.
@26# it was shown that some rows and columns of the ma
cesC6 possess analytic properties with respect tok. In par-
ticular, the columns (C1)•1, (C1)•2, and (C2)•3 are holo-
morphic for Imk.0, while the rows (C1

21)1•, (C1
21)2•, and

(C2
21)3• are holomorphic for Imk,0. This enables us to fix

the matrixS1 . We assume

S15S 1 0 S13

0 1 S23

0 0 S33
D , ~2.5!

whereSi j is an entry of the scattering matrixS. Then the
following matrix @33#:

F15C1ES1E
21[@~C1!

•1 ,~C1!
•2 ,~C2!

•3# ~2.6!

is holomorphic in the upper half-plane of the complexk
plane, while the matrix~the superscriptt stands for the trans
pose!

F2
215ES1

† E21C1
21[„~C1

21!1• ,~C1
21!2• ,~C2

21!3•…
t

~2.7!

is holomorphic in the lower half-plane. These two matric
represent the solution of the RH problem

F2
21F15ES1

† S1E
21[G, F6→1,k→`, ~2.8!
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on the analytic factorization of the nondegenerate ma
G(k) given on the real axis Imk50. In addition, the matrices
F6 satisfy the spectral equation~2.3!. Substituting the
asymptotic decomposition ink,

F1511k21F1
[1]1••• ~2.9!

into Eq. ~2.3! one reconstructs the potentialQ from the so-
lution of the RH problem~2.8!

Q52@A,F1
[1] #. ~2.10!

In the general case the matricesF1 andF2 have zeroskj
and k̄ j , j51, . . . ,N, in the upper and lower half-plane
respectively, i.e., detF1(kj )50 and detF2

21( k̄ j )50. Thus
we have in general the RH problem with zeros. By virtue
the Hermiticity of the potentialQ, the matrixG(k) is also
Hermitian one and the matricesF6 satisfy the involution
conditionF1

† (k)5F2
21(k* ). It follows that the index of the

RH problem ~2.8! @or, more exactly, the index of th
detG(k) over the real axis Imk50# is zero, and as a resu
we have paired zeros, i.e., every zerokj in the upper half-
plane has its counterpartk̄ j5kj* in the lower half-plane. The
solutionF6 of the RH problem with zeros can be express
through the solutionF6

0 of the regular RH problem,

F65F6
0 G, detF6

0 Þ0 ;k, ImkÞ0, ~2.11!

with

~F2
0 !21F1

0 5GGG21[G0. ~2.12!

Soliton solutions of the Manakov system~1.1! correspond to
the RH problem with zeros providedG51, i.e.,F6

0 51, the
matrix G being expressed through some projective matric
For example, one-soliton solution corresponds to a sin
zerok1 in the upper half-plane and the matrixG reads@31#

G~k,t,z!512
k12k1*

k2k1*
P~t,z!, ~2.13!

whereP(t,z) is a projective matrix,P5up&(^pup&)21^pu,

P5~ up1u21up2u21up3u2!21S up1u2 p1p2* p1p3*

p2p1* up2u2 p2p3*

p3p1* p3p2* up3u2
D ,

composed out of the entries of the three-component ve
columnup&5(p1 ,p2 ,p3)

t. The vectorup& is a solution, up to
an arbitrary norm, of the equationG(k1)up&50. Comparing
Eqs.~2.9! and ~2.13! we conclude thatF1

[1]52(k12k1* )P,
which allows us to express the potential through the pro
tive matrixP: Q5(k12k1* )@A,P# or

qj522~k12k1* !P3 j , j51,2. ~2.14!

Therefore, the problem of finding the soliton solution is r
duced to finding the projective matrixP. Its dependence on
the coordinatest andz is determined by the equations
x

f

d

s.
le

or

-

-

up&t5 ik1Aup&, up&z5 ik1
2Aup&, ~2.15!

hence it follows that (k15j1 ih), j51,2,

pj~t,z!5exp@ i jt1 i ~j22h2!z#exp~2ht22jhz!pj
0 ,

p3~t,z!5exp@2 i jt2 i ~j22h2!z#exp~ht12jhz!p3
0

wherepj
0 andp3

0 are constants determined by the initial co
ditions imposed on Eqs.~2.15!. By virtue of the fact that the
matrix P is independent of the norm ofup&, we can express
P in terms of the quantitiesnj , nj5(pj /p3)* ,

P5~ un1u21un2u211!21S un1u2 n1* n2 n1*

n1n2* un2u2 n2*

n1 n2 1
D ,

~2.16!

wherenj
05(pj

0/p3
0)* ,

nj~t,z!5exp@22i jt22i ~j22h2!z#

3exp~22ht24jhz!nj
0 . ~2.17!

As the solutionq(t,z) is given in terms ofP3 j , j51,2, we
note the explicit expression forP3 j

P3 j5
exp@22i jt22i ~j22h2!z#exp~22ht24jhz!

exp~24ht28jhz!~ un1
0u21un2

0u2!11
nj
0 .

Finally, introducing the following notations:

un1
0u21un2

0u25e2a, y52ht14jhz2a,

f52jt12~j22h2!z5
j

h
y2D~z!,

D~z!52~j21h2!z2
j

h
a, ~2.18!

we obtain with the help of Eq.~2.14! the soliton solution of
the Manakov system~1.1! @26#

qj~t,z!522ihQ je
2 ifsechy, ~2.19!

whereQ j5nj
0e2a, j51,2, are the polarization paramete

satisfying the natural identityuQ1u21uQ2u251.
Therefore, given discrete spectral datak1 and up& of the

RH problem one obtains the one-soliton solution of t
Manakov system. Generalization to the case ofN zeroskj ,
j51, . . . ,N, is straightforward. In the general case, i.e., w
N zeros and nonsoliton~continuous! part of spectral data, the
latter consist ofG(k,t,z) for Imk50 ~continuous spectrum!
andk1 , . . . ,kN , up1&, . . . ,upN& with the condition Imkj.0
~discrete spectrum!. A perturbation of system~1.1! will
modify z-evolution equations~2.15! of spectral data.

III. PERTURBATION-INDUCED EVOLUTION
OF DISCRETE SPECTRAL DATA

The goal of this section is to obtain evolution equatio
for the discrete spectral data of the RH problem taking i
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account perturbation. According to the scheme describe
Sec. II, this will allow us to find corrections to soliton cha
acteristics.

Recall the spectral equation~2.3!. First of all we find
variations dC6 of the functionsC6 resulting from the
variation of potential caused by perturbationR: dQ5Rdz.
From Eq. ~2.3! we obtain the equation
(C21dC)t5 ik@A,c21dC#1 iC21dQC. Integration with
account of limt→6`(C6

21dC)50 gives

dC65 iC6ES E
6`

t

dt E21C6
21dQC6EDE21. ~3.1!

Then corresponding variation of the scattering matrix rea

dS5d~E21C1
21C2E!5 iSE

2`

t

dt E21C1
21dQC1E

1 i S E
t

`

dt E21C1
21dQC1EDS,

which together with the factorization~2.4! leads to

S1
21~dS!S25S1

21dS12S2
21dS2

5 i E
2`

`

dt E21F1
21dQF1E. ~3.2!

Here the functionF1 is defined as in Eq.~2.6! and also
satisfiesF15C1ES1E

215C2ES2E
21. In the following

we shall use a special notation for the integral in the rig
hand side of Eq.~3.2!, namely,

g~a,b!5 i E
a

b

dt E21F1
21RF1E, ~3.3!

with the specification g(2`,`)[g(k). Notice that
trg(a,b)50. We obtain

dS5S1g~k!S2
21dz. ~3.4!

In view of the explicit expression forS1 ~2.5!, this variation,
as is seen from Eq.~3.4!, can be calculated in the following
way @M(33)[diag(0,0,1)#:

dS5dSM~33!5S1g~k!S2
21M~33!dz5S1g~k!S1

21SM~33!dz

5S1g~k!M~33!dz. ~3.5!

Now we can write the variation of the solution to the R
problem. Taking into account from Eq.~3.1! that
dC15C1ES1g(`,t)S1

21E21dz, we obtain with the help
of Eqs.~2.6! and ~3.5!

dF15dC1ES1E
211C1E~dS1!E215F1E@g~`,t!

1g~k!M~33!#E
21dz[F1EPE21dz, ~3.6!

where
in

s

-

P~k!5S g11~`,t! g12~`,t! g13~2`,t!

g21~`,t! g22~`,t! g23~2`,t!

g31~`,t! g32~`,t! g33~2`,t!
D ~k!.

~3.7!

The matrixP(k) plays the key role in the following analysi
because it contains all needed information about the per
bation. Its behavior with respect to the spectral parametek
reads

P~k!5P r~k!1
1

k2k1
Res$P~k!,k1%, ~3.8!

whereP r(k) is the holomorphic part in the upper half-plan
Imk.0 and Res$ , % stands for residue atk1. At the asymp-
totics t→` the matrixP is considerably simplified

P~k!5S 0 0 g13~k!

0 0 g23~k!

0 0 g33~k!
D , t→`. ~3.9!

Now we have everything to derive the equations determin
z evolution of the discrete spectrum of the RH problem.
shown in the Appendix, they read

up&z5 ik1
2Aup&2E~k1!P r~k1!E

21~k1!up&, ~3.10!

k1z52Res$trP~k!,k1%52Res$g33~k!,k1%. ~3.11!

In Sec. IV, on the example of combined linear and cu
perturbations, we give a detailed analysis of Eqs.~3.10! and
~3.11!.

IV. ADIABATIC APPROXIMATION

As pointed out in Sec. II, within the adiabatic approxim
tion we should imposeF15G, where@see Eq.~2.13!#

G512
k12k1*

k2k1*
P, G21511

k12k1*

k2k1
P. ~4.1!

This leads to the following expression for the matrixg(k)
~3.3!:

g~k!5 i E
2`

`

dt E21FRS 12 k12k1*

k2k1*
PD

1
k12k1*

k2k1
PRS 12 k12k1*

k2k1*
PD GE. ~4.2!

Hence,

Res$g~k!,k1%5 i ~k12k1* !E
2`

`

dt E21~k1!PR~12P!E~k1!

~4.3!

and thez dependence~3.11! of zerok1 has the form

k1z52hF E
2`

`

dt PR~12P!G
33

. ~4.4!
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Let us now explicitly obtain the value of the regular pa
g r(k) at k5k1, because just this value enters the mat
P r(k1) involved in Eq.~3.10!. It follows from Eqs.~4.2! and
~4.3!:

g r~k1!5@g~k!2~k2k1!
21Res$g~k!,k1%#k1

5 i E
2`

`

dt E21~k1!PR~12P!E~k1!

1 i lim
k→k1

k12k1*

k2k1
E

2`

`

dtHE21~k!PRS 12 k12k1*

k2k1*
PD

3E~k!2E21~k1!PR~12P!E~k1!J
5 i E

2`

`

dtH E21~k1!R~12P!E~k1!1~k12k1* !

3
]

]kFE21~k!PRS 12 k12k1*

k2k1*
PDE~k!G

k1
J

5 i E
2`

`

dt E21~k1!$R~12P!1PRP2 i t~k12k1* !

3@A,PR~12P!#%E~k1!. ~4.5!

Taking into account Eq.~4.5! and rewriting by entries the
formula ~3.10!,

pjz5 ik1
2pj2e2ik1tg r j 3~k1!p3 ,

p3z52@ ik1
21g r33~k1!#p3 ,
by
we obtain the corresponding equations for the quanti
nj , j51,2, which describe the polarization state of the so
ton

njz5@2ik1
21g r33~k1!#* nj2@e2ik1tg r j 3~k1!#* .

Hence it follows@compare with Eqs.~2.17! and ~2.18!# that

nj
0
z5@g r33~k1!#* nj

02expF2i Ez

dzk1*
2~z!G@g r j 3~k1!#* ,

~4.6!

where the possible perturbation-inducedz dependence of
k1 is taken into account.

Therefore, to describe the parameters of a perturbed s
ton in the adiabatic approximation, it is necessary to so
Eqs. ~4.4! and ~4.6!, provided the perturbation is a give
function of t andz. As an example, let us consider the pe
turbed Manakov system

iq1z1
1
2q1tt1~ uq1u21uq2u2!q15 i eq12 ibuq1u2q1 ,

~4.7!

iq2z1
1
2q2tt1~ uq2u21uq1u2!q25 i eq22 ibuq2u2q2 ,

wheree andb are small real parameters. This means that
perturbation matrixR is given by

R5eQ2bQ3. ~4.8!

Depending on the signs ofe and b this perturbation de-
scribes the action of linear and nonlinear damping or g
@34,35#. For example, for positivee andb the perturbation
~4.8! describes combined action of excess linear gain
nonlinear damping.

We start with the evolution of zerok15j1 ih of the RH
problem. According to the formulas in Sec. II we have
P5
1

2S uQ1u2e2y Q1*Q2e
2y Q1* e

if

Q2*Q1e
2y uQ2u2e2y Q2* e

if

Q1e
2 if Q2e

2 if ey
D sechy, eQ522i ehS 0 0 Q1* e

if

0 0 Q2* e
if

Q1e
2 if Q2e

2 if 0
D sechy,

bQ3528ibh3S 0 0 2Q1* uQ1u2eif

0 0 2Q2* uQ2u2eif

Q1uQ1u2e2 if Q2uQ2u2e2 if 0
D sech3y. ~4.9!
Hence, according to Eq.~4.4! we find

k1z52i eh2
16

3
ibh3~ uQ1u41uQ2u4!. ~4.10!

From Eq.~4.10! it follows that jz50, i.e., in the adiabatic
approximation the velocity of the soliton is not affected
the perturbation~4.8!, while the amplitudeh satisfies the
equation
hz52eh2
16

3
bh3~ uQ1u41uQ2u4!. ~4.11!

Now we turn to the other soliton parameters, i.e.,Q1, Q2,
anda. Since they are expressed through the quantitiesnj

0 ,
j51,2, let us consider Eq.~4.6!. From Eqs.~4.5! and ~4.9!
we get

g r33~k1!52e1 8
3bh2~ uQ1u41uQ2u4!

and
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expS 22i Ez

dzk1
2Dg r j 3~k1!

52e~nj
0!* F112S a24jEz

dzh D G
1
8

3
bh2~nj

0!* F uQ j u212S a24jEz

dzh D
3~ uQ1u41uQ2u4!,

whereh(z) is the solution of Eq.~4.11!. Therefore, Eq.~4.6!
takes the form

nj
0
z52H eS a24jEz

dzh D2
4

3
bh2F uQ j u2

12S a24jEz

dzh2
1

2D ~ uQ1u41uQ2u4!G J nj0 .
~4.12!

Then the evolution equation fora, due to Eq.~2.18!, is writ-
ten as

az52S a24jEz

dzh D Fe2
8

3
bh2~ uQ1u41uQ2u4!G

~4.13!

and, in virtue ofQ j5nj
0e2a, the evolution equation for

uQ1u is

uQ1uz5
16
3 bh2uQ1u~ uQ1u221!~ uQ1u22

1
2 !, ~4.14!

while uQ2u can be found from the identity
uQ1u21uQ2u251. As for the phase w j of Q j ,
Q j[uQ j ueiw j , we evidently havew jz50 because the coeffi
cients in the Eq.~4.12! are real valued. Thus, the evolution
parameters of the perturbed soliton within the adiabatic
proximation is described by the closed system of Eqs.~4.11!,
~4.13!, and ~4.14!. Standard analysis of the key equatio
~4.14! gives three stationary solutions foruQ1u: uQ1u50,
uQ1u51/A2, and uQ1u51. From Eq.~4.14! it is also seen
that forb.0 the stationary pointuQ1u51/A2 is the attractor
for the initial values of uQ1u subjected to inequality
0,uQ1u,1, while for b,0 the stationary pointsuQ1u50
anduQ1u51 are the attractors for the initial values subject
to the inequalities 0<uQ1u,1/A2 and 1/A2,uQ1u<1, re-
spectively. Similar results were obtained by Afanasjev@35#,
who used anAnsätz to derive equations for the soliton pa
rameters. It is essential that the rest equations~4.11! and
~4.13! also have a stationary point forh provided uQ1u is
equal to one of the stationary points discussed above. Ind
denotingd5uQ1u41uQ2u4 we get

hz52h~e2 8
3bdh2!,

az52S a24jEz

dzh D ~e2 8
3bdh2!, ~4.15!

and the stationary pointh* is given by
p-

ed,

h
*
2 5

3e

8db
, d5H 1, uQ1u50,1

1

2
, uQ1u5

1

A2
~4.16!

provided the conditioneb.0 is satisfied. To consider th
stability of the stationary solutionh* , turn to the first of
Eqs. ~4.15!. For a small deviationDh from the stationary
value we obtain the linearized equation

Dhz524eDh.

Hence, for positivee ~and, due to the conditioneb.0, for
positiveb) the stationary pointh* is stable, otherwise it is
unstable.

Thus, the analysis of the adiabatic approximation giv
evidence of the existence of the stationary regimes of sol
propagation, with the perturbation of the form~4.8! deter-
mining the only amplitude~4.16! of the stationary soliton.
This fact will be used in Sec. V for the calculation of co
rections to the soliton shape.

V. FIRST-ORDER APPROXIMATION: DISTORTION
OF THE SOLITON SHAPE

Within the adiabatic approximation we find th
perturbation-induced evolution of the soliton parameters,
neglect a distortion of the soliton shape. Mathematically t
means that we dealt before with discrete spectral data o
That is the continuous part of spectral data which describ
distortion of the soliton shape and possible emission of lin
waves by soliton.

To take into account continuous spectral data we nee
drop the conditionG51 @and, as a consequence,F0(k)51#
used in Sec. II. This necessitates the solution of the reg
RH problem~2.12!. Indeed, we can write in the first-orde
approximation

F0511F0~1!, ~5.1!

whereF0(1) is a first-order correction in respect to perturb
tion. Then Eqs.~2.9! and ~2.10! give

Q52 lim
k→`

k@A,F1#52 lim
k→`

k@A,~11F1
0 ~1!!G#5Qs1Qs

~1! ,

where the correction Qs
(1) has the form Qs

(1)

52 limk→`k@A,F1
0 (1)G#. Now the matrixG which deter-

mines the RH problem~2.12! also can be represented a
G511G(1), whereG(1) is of the first order. Therefore, th
regular RH problem in the first-order approximation tak
the form

~F2
0 !21F1

0 5G0511GG~1!G21. ~5.2!

The jump of the piecewise holomorphic functionF0 on the
real axis Imk50 is expressed through the right-hand side
Eq. ~5.2!

F1
0 2F2

0 5F2
0 G02F2

0 5F2
0 GG~1!G21.

The Plemelj formula gives
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F0511
1

2ipE2`

` dl

l2k
~F2

0 GG~1!G21!~ l !. ~5.3!

Selecting then inF6
0 , due to Eq.~5.1!, the contribution of

the first-order approximation we obtain from Eq.~5.3!

F1
0 ~1!5

1

2ipE2`

` dl

l2k
~GG~1!G21!~ l !.

Hence it follows that

Qs
~1!52 lim

k→`

kFA, 1

2ipE2`

` dl

l2k
~GG~1!G21!~ l !G~k!G

~5.4a!

or, in view of the explicit expression forG ~4.1!,

qj
~1!5

i

pE2`

`

dk@GG~1!G21#3 j . ~5.4b!

Thus, to obtain the correction to the soliton shape we hav
calculate the matrixG(1).

The matrixG(1) can be calculated in the following way
Similar to F1 @see Eq.~A3!# it is easy to show thatF2

21

involved in the formulation of the RH problem~2.8! satisfies
the equation

F2
21

z5 ik2AF2
212F2

21V2EP̄E21F2
21,

whereP̄(k)52P†(k* ). Hence, it follows thatz evolution
of G reads

Gz5 ik2@A,G#1GEPE212EP̄E21G. ~5.5!

Now introduce the matrix G0(k)5exp(2ikAt
2 ik2Az)Gexp(ikAt1ik2Az) and take into account that th
continuous spectrum of the RH problem corresponds to
real axis Imk50. TherewithP̄(k)52P†(k) and

G0z5G0e
2 ik2AzPeik

2Az1e2 ik2AzP†eik
2AzG0 . ~5.6!

Recalling thatP(k) is of the first order in respect to pertu
bation and having in mind the representationG0511G0

(1) ,
we write Eq.~5.6! in the first order as

G0
~1!

z5e2 ik2Az~P1P†!eik
2Az. ~5.7!

Here

P1P†5S 0 0 g13

0 0 g23

2g31 2g32 0
D ~5.8!

and we took into account that for Imk50 in the first-order
approximationg(k) satisfies the identityg

•3* (k)52g3•(k).
Integrating Eq.~5.7! for g i j determined in Eq.~4.2! and
putting

G~1!~k!5exp~ ikAt1 ik2Az!G0
~1!exp~2 ikAt2 ik2Az!,

~5.9!
to

e

we can calculate the needed correction with the help of E
~5.4!. Note that Eq.~5.4a! can be represented in more deta
provided the explicit expressions~4.1!, ~4.9!, and Hermiticity
of G are taken into account, namely,

~GG~1!G21!315G31
~1!1

ih

k2k1
Q1~Q1*G31

~1!

1Q2*G32
~1!!e2ysechy2

ih

k2k1*
G31

~1!eysechy

1
h2

~k2k1!~k2k1* !
Q1@Q1*G31

~1!1Q2*G32
~1!

1„Q1~G31
~1!!*1Q2~G32

~1!!* …e22if#sech2y.

~5.10!

The corresponding expression for (GG(1)G21)32 follows
from Eq. ~5.10! after the evident substitutionsQ1↔Q2 and
G31↔G32. It follows from Eq. ~5.10! that for y@1 it is
sufficient to consider the contribution of the first and thi
terms, whereas for2y@1 the first and second ones contri
ute. Considering separately the linear and nonlinear part
the perturbation~4.8! we find the corresponding values o
g3 j (k), g̃3 j (k)[Q j

21exp@4ikjz22i(j21h2)z#g3j(k)

g̃3 j
~e!~k!52epexpS i k2j

h
a D sechS p~k2j!

2h D ,
g̃3 j

~b!~k!52
2

3
pb~k2k1!~k2k1* !F2uQ j u2S 11

ih

k2k1
D

2~ uQ1u41uQ2u4!S 11
2ih

k2k1*
D GsechS p~k2j!

2h D .
Inserting these expressions in Eq.~5.7! and integrating onz
we get (G0

(1))3 j for both perturbations. Thereby, omitting fo
z@1 the fast oscillating exponent, we obtain from Eq.~5.9!

G3 j
~1!~e !52

i epQ j

2~k2k1!~k2k1* !
expF2i ~j21h2!z2 i

ja

h G
3expS 2

ik

h
yD sechS p~k2j!

2h D , ~5.11a!

G3 j
~1!~b!52

ibpQ j

3~k2k1!~k2k1* !
expF2i ~j21h2!z2 i

ja

h G
3expS 2

ik

h
yD F2uQ j u2S 11

ih

k2k1
D

2~ uQ1u41uQ2u4!S 11
2ih

k2k1*
D GsechS p~k2j!

2h D ,
~5.11b!

where in the case of the nonlinear perturbation, i.e., in
~5.11b!, we ought to take foruQ j u their asymptotic values in
accordance with the results of the adiabatic approximatio
Sec. IV. Now insert the obtained expressions~5.11! into
Eq. ~5.10! and integrate onk according to Eq.~5.4b!. All
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the integrals are easily calculated by means of resid
the contributions from the polesj63ih, j65ih, etc., of
sech@p(k2j)/2h# being negligibly small as compared wit
the contributions of the polesj6 ih. Here, after simple cal-
culations we get the corrections to the soliton shape
y@1

qj
~1!~e !52

e

2h
Q jexpF2i ~j21h2!z2

i j

h
~y1a!G

3S 2y21 p2

6 De2y, ~5.12a!

qj
~1!~b!5

4

3
bhQ jexpF2i ~j21h2!z2

i j

h
~y1a!G

3F S 2y21 p2

6
21D ~ uQ1u41uQ2u4!

12~12y!uQ1u2Ge2y. ~5.12b!

Note that the correction~5.12a! for uQ j u51, what corre-
sponds to the NLS equation, coincides with the result
tained in Ref.@30#. Now let us turn to the case of the join
action of the two perturbations. Under the conditi
eb.0, there exists the stationary regime of the solit
propagation with the amplitude satisfying Eq.~4.15!. For ex-
ample, for positivee andb we simply ought to sum the two
corrections~5.12! with uQ1u5uQ2u51/A2 andh5h* from
Eq. ~4.15!. The resulting steady-state correction to the soli
shape reads fory@1

qj
~1!5

e

2A2h
expF2i ~j21h2!z2

i j

h
~y1a!G~122y!e2y.

~5.13a!

Analogous simple calculations can be carried out
2y@1. We obtain the following resulting steady-state co
rection to the soliton shape for2y@1:

qj
~1!5

e

2A2h
expF2i ~j21h2!z1

i j

h
~y2a!G~112y!ey.

~5.13b!

These expressions demonstrate that in the process of goi
the stationary regime~for e andb positive! the two correc-
tions to the soliton shape partly compensate each ot
which results in mutual canceling out of the leading ter
with y2 of the asymptotics~5.12!.

For negativee andb the conditioneb.0 also holds and
the stationary solutions areuQ1u51 (uQ2u50) and
uQ1u50 (uQ2u51), which lead to doubling of the correc
tions ~5.13!. But in this case the stationary pointh* is un-
stable.

VI. CONCLUSION

We have proposed a natural generalization of the Ka
Karpman-Maslov perturbation scheme which was elabora
for soliton equations with 232 matrix spectral problem, to
s,

r

-

n

r
-

to

r,
s

-
d

the Manakov system. It is important to stress that it is
Riemann-Hilbert ideology initiated many years ago f
studying the soliton equations by Zakharov, Shabat, Ma
kov, and some others that turns out to be the best groun
build an analytical approach for dealing with small perturb
tions in soliton systems. It is evident that neither the Man
kov system nor the Zakharov-Shabat spectral problem
haust the applicability of the presented formalism. Recen
it was proven@36# that the Riemann-Hilbert problem can b
successfully used to treat perturbed solitons of equations
sociated with theN3N matrix Zakharov-Shabat spectra
problem. Moreover, we developed@37,38# a Riemann-
Hilbert-based method to find soliton solutions for the mo
fied Manakov system~a system of two coupled modifie
nonlinear Shro¨dinger equations! solvable by the 333 matrix
Wadati-Konno-Ichikawa spectral problem. The soliton p
turbation theory for the modified Manakov system will b
present elsewhere.
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APPENDIX

Here we derive the evolution equations~3.10! and ~3.11!
for discrete spectral data. For simplicity consider the case
a single zerok1 of the RH problem. We start with the equa
tion F1(k1)up&50 which is true irrespectively of the actio
of a perturbation. Differentiation of this equation gives

F1~k1!
d

dz
up&1S ddzF1~k! D

k1

up&50. ~A1!

Note thatz evolution ofF1(k), in the case of action of a
perturbation, contains the additional term~3.6!, i.e.,

F1z5VF12 ik2F1A1F1P̂, ~A2!

where P̂5EPE21 and the matrixP is determined in Eq.
~3.7!. This gives

d

dz
F1~k!5@F1~k!#z1kz

]

]k
F1~k!

5VF12 ik2F1A1F1P̂1kz
]

]k
F1 .

~A3!

In view of the explicit structure~3.8! of P, we introduce a
new matrixP̃

P̃~k![~k2k1!P̂ r~k!1Res$P̂~k!,k1%, ~A4!

hence

P̃~k1!up&5Res$P̂~k!,k1%up&.

Equation~A2! gives



-
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P̂~k!5F1
21F1z1 ik2A2F1

21VF1 ,

and,F̃1[(k2k1)F1
21 ,

P̃~k!5F̃1F1z1 ik2~k2k1!A2F̃1VF1 .

By virtue ofF1(k1)up&50 and Eq.~A4! the above formula
gives

P̃~k1!up&5Res$P̂~k!,k1%up&5$F̃1~k!@F1~k!#z%k1up&

5~k2k1!z,k5k1
up&52k1zup&.

Therefore, we obtain the important identity

Res$P̂~k!,k1%up&52k1zup&, ~A5!

which will be used below. Equation~A1!, with account of
Eq. ~A3!, takes the form

F1~k1!~ up&z2 ik1
2Aup&)1~F1~k!@P̂ r~k!1~k2k1!

21

3Res$P̂~k!,k1%#!k1up&1k1zS ]

]k
F1~k! D

k1

up&50. ~A6!

As F1(k1)Res$P̂(k),k1%50 in view of the existence of the
quantity (F1P̂)k1, we obtain

@F1~k2k1!
21Res$P̂~k!,k1%#k1up&

5S F1~k!2F1~k1!

k2k1
D
k1

Res$P̂~k!,k1%up&

5S ]

]k
F1~k! D

k1

Res$P̂~k!,k1%up&

52k1zS ]

]k
F1~k! D

k1

up&,
t.
where during the last stage we used Eq.~A5!. Now it is seen
that this term is canceled with the last term in Eq.~A6!,
which gives

F1~k1!~ up&z2 ik1
2Aup&1P̂ r~k1!up&)50.

Because of the identities dim@kerF1(k1)#51 and
F1(k1)Res$P̂(k),k1%50, we obtain the perturbation
inducedz-evolution equation for the vectorup&

up&z5 ik1
2Aup&2E~k1!P rE

21~k1!up&, ~A7!

where asP(k) we may take its asymptotic expression~3.9!.
Now turn to the z evolution of zero k1. As

detF1(k)5O(k2k1) for k→k1, it follows from the evident
expressiond/dz@detF1(k)#k150 that

k1z52F @detF1~k!#z
]

]k
detF1~k!G

k1

.

Taking into account@detF1(k)#z5@ trP(k)#detF1(k) and

detF1~k!5~k2k1!detF1
0 ~k!, detF1

0 ~k!Þ0,

we get

k1z52 lim
k→k1

tr@P r~k!1~k2k1* !21Res$P̂~k!,k1%#detF1
0 ~k!

F ]

]k
detF1

0 ~k!G k2k1
k2k1*

1detF1
0 ~k!

]

]k

k2k1
k2k1*

52Res$trP̂~k!,k1%52Res$g33~k!,k1%,

i.e., Eq.~3.11!.
N.

.
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