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Perturbation theory for solitons of the Manakov system
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We formulate the Kaup-Karpman-Maslov-type perturbation theory for solitons connected withxtBe 3
matrix spectral problems, using the example of the perturbed Manakov system. The adiabatic approximation
and first-order corrections to the soliton shape are considered. The self-orientation effect of the soliton polar-
ization dynamics caused by a cubic perturbation is described. It is also shown that the combined action of
linear and cubic perturbations provides existence of a stationary regime for the soliton propagation with the
single fixed amplitude and that the corrections to the soliton shape from linear and cubic perturbations partially
compensate each oth¢651063-651X%97)16405-4

PACS numbsdis): 03.40.Kf, 42.65.Tg

I. INTRODUCTION ence to the linear birefringence. At last, in Ref24,25
some elements of perturbation theory for polarized solitons
At the present time much attention is being paid to thewere developed. The idea of this approach is based on the
investigation of optical soliton polarization dynamics. Thefact that for some values of parameters the original CLNS
interest in the polarization effects is primarily caused by thesystem transforms to the Manakov systg26]
necessity to take into account birefringence of real optical

fibers[1-9]. Single-mode optical fibers support two modes 91,7+ 501,.+ (101 *+]02]*) 92 =0,
of polarization due to linear birefringence combined with _ . ) )
weak intermodal dispersion. These modes are coupled to- iQ2,F 202, + (|92 “+]02/9)@2=0, (11

gether by means of the Kerr effect which stabilizes solitons
against spreading due to dispersion and against broadeninghich is integrable by IST method. Hegg andq, are nor-
and splitting due to birefringence. Secondarily, polarizationmalized envelopes of the two modes of polarizatiorand
dynamics is closely related to the cross-phase modulation are, correspondingly, normalized time and distance along
which, in many cases, leads to formation of the bound statethe fiber. Under condition that terms violating the integrabil-
of solitons[4,5]. This effect has also attracted attention in aity of Eq. (1.1) are small, one can estimate their effect on the
number of applications connected with pulse compressioinitially unperturbed vector soliton in the framework of per-
[10], short-pulse generatiofil1], and wavelength-division turbation theory. It should be stressed that the Manakov sys-
multiplexing[12]. Finally, we point out the connection of the tem is a good approximation to the real physical models. For
studied issue to the recent studies of optical domain wall€xample, Kaup and Malome[®7] have proved that such
separating the regions of different polarizatiga8—115. phenomena as soliton trapping and daughter wakiedow
Taking into account the polarization of an electromag-formation encountered in optical fibers are already contained
netic field, the propagation of light pulses in a Kerr mediumin the Manakov model. Moreover, in a recent paf#8] the
is described by a system of coupled nonlinear Sdimger Manakov system was used to study the polarization scatter-
equations(CNLS) [8]. In general, such a system is noninte- ing of soliton-soliton collisions.
grable in terms of the inverse scattering transfofi®T) Hence, from the point of view of an analytical approach
method. Numerical simulatiorf2,3,16—18 have revealed a to investigation of polarized solitons, the use of the Manakov
much richer dynamics for CNLS, as compared with a singlesystem as a zero-order approximation, followed by the ac-
NLS equation, although, they do not provide as much unicount of small nonintegrable corrections, is very promising.
versality as analytical methods. Such an approach in the case of nonlinear equations inte-
There are different approaches to the analytical descripgrable by the X2 matrix version of the IST metho@n
tion of polarized(vectop soliton dynamics. One of the fre- particular, the famous NLS equatipis based on the well-
quently used methods deals with variodissaze which re-  known scheme by Kaup-Karpman-Maslo@¢KM ) [29,30.
duce CNLS equations to a system of ordinary differentialAt the same time, the formalism of perturbation theory for
equationg[5,14,17-2Q. The variational approach was suc- soliton equations integrable by thex® matrix version of
cessfully applied in Ref$21,22. It permits us, in particular, the IST method[e.g., the Manakov systerl.1)], which
to obtain the conditions of resonance splitting of a two-would be of the same completeness and convenience in cal-
component soliton into two separating solitons of differentculation as the KKM scheme, has not been constructed. The
polarizations. By means of the Lie group analysis, Alfinitoreason for that is mainly the mathematical peculiarities of the
et al. [23] found some exact solutions of CNLS with refer- spectral problems over the space 0f£2 matrices. Indeed,
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one finds that the matrix Jost solutions to the spectral prob- 1 0
lems of 2<2 matrix dimension possess definite analytic .
properties with respect to a spectral variable as a whole, thus A=10 1 0], Q=10 0 gz]. (22
allowing us to use the methods of analysis in the complex 0 0 -1 g1 g O
plane of the spectral variable directly. On the other hand,
being turned to higher matrix dimensions, one faces thén other words, Egs. (1.1 are equivalent to
problem of indefinite analytic behavior of the matrix JostU,—V,+[U,V]=0<iQ,— 1AQ,,—AQ®*=0 for all values
solutions. Hence, some preliminary manipulations with theof the spectral variablk. The following analysis is based on
Jost solutions have to be carried out to adapt the KKM apthe RH problem associated with the spectral equation:
proach to higher matrix dimensions.

In the present paper we propose a simple formalism of v _=ik[A,V]+iQWV. (2.3
perturbation theory to soliton equations associated with the
3X 3 matrix spectral problems, which is as efficient as theln this connection we demonstrate below the way to obtain
KKM method. Since the key element of the proposed for-the soliton solution of the Manakov system within the RH
malism is analytic behavior of the Jost-type functions, theframework and define the notations used.
Riemann-HilbertRH) problem(see, for example, Ref31]) Consider the spectral proble(@.3) with the potentialQ
is the natural basis for our method. The first application ofdefined in Eq.(2.2. We assume the functiong;(7,z),
the RH problem to perturbed nonlinear equations associatejd=1,2, belonging to the Schwarz spaag 0 as|7f_>oo)_
with the 2X2 matrix spectral problem was made by Kivshar Define the matrix Jost solution .. of Eq. (2.3) which sat-
[32] for calculation of the first-order corrections to the soli- isfy the asymptotic condition® . —1 for 7— =, 1 is the
ton of the Landau-Lifshitz equation. In Ref&3] the possi-  unit matrix. The scattering matri$(k) can be defined in
bility of a purely algebraic calculation of higher-order cor- terms of the Jost solutions
rections to the NLS soliton on the basis of the RH problem
was pointed out and dynamics of a perturbed optical soliton W _(k,7)=W¥_(k,7)ESKK)E"!, E=expikA7).
in a fiber with combined resonant and nonreson@unbic)
nonlinearities was described. The RH problem associated with the spectral equai®B

In Sec. Il we summarize the results of the RH-based apean be derived in the following waj81]. Perform a factor-
proach to the unperturbed Manakov system. In particular, wgzation of the scattering matris,
give a simple derivation of the soliton solution. The
perturbation-induced evolution equations for discrete spec- S,=SS , (2.9
tral data are obtained in Sec Ill. On the basis of these equa-
tions in Sec. IV, for the case of combined action of linear andproviding the entries of the matric&. are expressed with-
cubic perturbations to the Manakov system, we calculatgut division in terms of the entries of the mati$ In Ref.
adiabatic corrections to the soliton parameters. We als@26] it was shown that some rows and columns of the matri-
prove asymptotic stabilization of the polarization modesces¥ . possess analytic properties with respedt.tén par-
which is dependent on the initial polarization state. More-ticular, the columns¥ . ) 4, (¥.).,, and W _) 5 are holo-
over, we find the stationary regime of perturbed solitonmorphic for Ink>0, while the rows \gp;l)ld (x]r;l)z, and

propagation and the value of a steady-state soliton amplituc_i%q,:l)a. are holomorphic for k< 0. This enables us to fix
In Sec. V we calculate the first-order corrections to the 3°|'The matrixS, . We assume

ton shape and give evidence of partial compensation in the

0 0 0 ¢

stationary regime of corrections caused by linear and cubic 1 0 Sy

perturbations. In concluding Sec. VI we point out some ways

to generalize proposed soliton perturbation theory. The Ap- S;={0 1 Sx3], (2.9
pendix is devoted to detailed derivation of the equations for 0 0 Sy

the perturbation-induced evolution of the discrete spectral

data which are used in Sec. IV. where §;; is an entry of the scattering matr@ Then the

following matrix [33]:

Il. THE RIEMANN-HILBERT PROBLEM AND SOLITON .
OF THE MANAKOV SYSTEM O, =V, ES E "=[(V,;)1,(V;)2,(¥V_)3] (26

The Manakov systerl.1) is integrable by means of the is holomorphic in the upper half-plane of the compliex

IST method[26,31] and can be represented as a compatibil-plane, while the matrixthe superscript stands for the trans-
ity condition for the following system of two linear matrix pose

equations:
O P=ESETMW = (Wi (P, (P,
¥ =UV—ikVA, T,=V¥—ik?TA, (2.1 2.7
where is holomorphic in the lower half-plane. These two matrices

represent the solution of the RH problem

. . ) i
UZI(kA+Q)1 V:|k2A+IkQ+%AQT— EAQZ, (I):lq)_F:EST‘_S_'_EilEG, (Dt—>l,k—>0°, (28)
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on the analytic factorization of the nondegenerate matrix |p),=ik,Alp), |p>Z=ik§A|p), (2.15
G(K) given on the real axis lk=0. In addition, the matrices
&. satisfy the spectral equatiof2.3). Substituting the hence it follows thatk;=¢+in), j=1,2,
asymptotic decomposition ik, ) )
pi(r.2)=exdiér+i(&2— n)z]exp— nT—2&m2)p]
O, =1+k o+ .. (2.9
Pa(7,2)=ex —iér—i(&~ 7°)z]exp nr+2£n2)pg
into Eq. (2.3) one reconstructs the potenti@l from the so-

lution of the RH problen{2.8) WherepJQ and pg are constants determined by the initial con-
ditions imposed on Eg4$2.15. By virtue of the fact that the
Q=—[A®1. (2.10  Matrix P is independent of the norm op), we can express

P in terms of the quantities;, n;=(p;/p3)*,

In the general case the matricés, and® _ have zero; PR %
[na|* ninz N3

andk;, j=1,... N, in the upper and lower half-planes,

respectively, i.e., ddt,(k;)=0 and deP_'(k))=0. Thus P=(|ny|?+|ng?+1)" 2| nn3  [n]* n3 |,

we have in general the RH problem with zeros. By virtue of n, n, 1

the Hermiticity of the potentiaQQ, the matrixG(k) is also (2.16

Hermitian one and the matricab.. satisfy the involution

condition® " (k) =®~(k*). It follows that the index of the wheren?=(p’/p3)*,

RH problem (2.8) [or, more exactly, the index of the _ i o o

detG(k) over the real axis Ik=0] is zero, and as a result nj(7,2)=exfg —2i§7—2i(£°= 7%)Z]

we have paired zeros,_i.e., every zégoin the upper half- X exp(— 27— 4&nz)n°. 2.17)
plane has its counterpatf= kj* in the lower half-plane. The .

solution® .. of the RH problem with zeros can be expressedAs the solutiong(7,z) is given in terms oPg;, j=1,2, we
through the solutiob? of the regular RH problem, note the explicit expression fd?3;

®.=dT, detb®#0 Vk, Imk#0, (2.11) 5 _exf —2ié7—2i(£2 - n’)zlexp( —2nT—4én2) 0
, ¥ exp(—4yr—8&nz)(Iny|?+[ngl%)+1 I
with
Finally, introducing the following notations:
(%) 1% =rGr1=c°. (2.12
In}?+[n5l?=€®, y=2p7+4énz-a,
Soliton solutions of the Manakov systeifh 1) correspond to
the RH problem with zeros provide@d=1, i.e., CI)‘;:L the
matrix I' being expressed through some projective matrices.
For example, one-soliton solution corresponds to a single

¢=2£7+2(82— nP)z= %y—A(z),

zerok, in the upper half-plane and the matiixreads[31] AZ)=2(£2+ 72) & 2.18
2)= - —a, .
ki —k3} ’ 7
17 R
I'(k72z)=1- WP(T’Z)’ (213 \ve obtain with the help of E¢2.14) the soliton solution of

the Manakov systerl.1) [26]

whereP(7,z) is a projective matrixP=|p)({p|p)) ~*(p, q;(7.2)= —2i 70,6 ¥secly, (2.19
Ip1l® PP PiP; where @l-:n?e‘“, j=1,2, are the polarization parameters
P=(|pa|2+|psl2+|ps2) 1| P2p} Ipal? pop% |, satisfying the ngtural .identitt@1|2+|®2|2=1.
. * 2 Therefore, given discrete spectral dataand|p) of the
PsP1 PPz [Ps| RH problem one obtains the one-soliton solution of the
. Manakov system. Generalization to the caséNaferosk; ,
composed out of the entries of the three-component vec:tcir:1 ... N, is straightforward. In the general case, i.e., with

column|p)=(p4,p2,p3)'. The vectorp) is a solution, up to

N zeros and nonsolitofcontinuous part of spectral data, the
an arbitrary norm, of the equatidi(k,)|p)=0. Comparing ¢ 3p P

latter consist ofG(k, 7,z) for Imk=0 (continuous spectrum

Eq;.(2.9) and(2.13 we conclude thatD_[j]= — (k= KI)P, _andky, ... ky, [p1), - .. ,/pn) with the condition Ink;>0
v_vhmh aII_ows usto exprfss the potential through the ProjeCidiscrete spectrum A perturbation of system(1.1) will
tive matrix P: Q= (k,—ki)[A,P] or modify z-evolution equation$2.15 of spectral data.
= — — k* . 1=
;= 2(ky kl)P3J , 1=12 (2.14 IlIl. PERTURBATION-INDUCED EVOLUTION

- . . . OF DISCRETE SPECTRAL DATA
Therefore, the problem of finding the soliton solution is re-

duced to finding the projective matriR. Its dependence on The goal of this section is to obtain evolution equations
the coordinates andz is determined by the equations for the discrete spectral data of the RH problem taking into



55 PERTURBATION THEORY FOR SOLITONS OF THE ...

account perturbation. According to the scheme described in
Sec. Il, this will allow us to find corrections to soliton char-

acteristics.

Recall the spectral equatiof2.3). First of all we find
variations 6V .. of the functionsW¥. resulting from the
variation of potential caused by perturbati® 5Q=Réz.
From Eq. (2.3 we obtain the equation
(P16W) =ik[A,y 16 ]+i¥~16QV. Integration with
account of lim_ . ..(¥:15¥)=0 gives

6\If+=i‘P+E(J’T dr El\P+16Q‘If+E)E1. (3.1

7629
Y1(®°, 1) y1A*,7) Y1 —°,7)
IM(k)=| v21(®,7)  y2d®,7) Yo —,7) | (K).
Yau(®,7)  yzA*,7)  ya3x(—%*,7)
3.7

The matrixII(k) plays the key role in the following analysis
because it contains all needed information about the pertur-
bation. Its behavior with respect to the spectral paranieter
reads

H(k)=1I, (k) +

RedqII(k),k,}, (3.8

k_kl

Then corresponding variation of the scattering matrix readswherell, (k) is the holomorphic part in the upper half-plane

5S= 5(E—1qf;1\1f_E)=isf dr ET 16QV  E

+i

f dr E‘l\Iff&Q\IuE)S,

which together with the factorizatiof2.4) leads to
S, Y(8S)S_=5.16S, —S_1sS

=if dr E"'® 16Qd . E. (3.2

Here the function® , is defined as in Eq(2.6) and also
satisfiesd , =¥ ,ES,E " '=¥_ES_E .. In the following

Imk>0 and Res§, } stands for residue &;. At the asymp-
totics 7— o the matrixII is considerably simplified

0 0 vk
0 0 vk )
0 0 1vys3(k)

Now we have everything to derive the equations determining
z evolution of the discrete spectrum of the RH problem. As
shown in the Appendix, they read

|p),=ik2A|p)— E(ky)TI, (k1) E~ (k)| p),

ki,= — RedtrII(k),k;} = — Req y33(K) kq}.

T (k)= T,

(3.9

(3.10
(3.1)

In Sec. IV, on the example of combined linear and cubic
perturbations, we give a detailed analysis of E§s10 and

we shall use a special notation for the integral in the right<(3.11).

hand side of Eq(3.2), namely,

b
y(a,b)ziJ dr E"'® 'R E, (3.3
a
with the specification y(—«,o)=vy(k). Notice that
try(a,b)=0. We obtain
5S=S, y(k)S~1sz. (3.9

In view of the explicit expression fd8, (2.5), this variation,

as is seen from Ed3.4), can be calculated in the following

way [ M(33=diag(0,0,1):

8S= 6SM (33 =S ¥(K)S"'M3362=S, ¥(K) S| SM 356z

=S, Y(K)M33 6z. (3.9

Now we can write the variation of the solution to the RH

problem. Taking into account from Eq(3.1) that
6V, =V _ ES, y(»,7)S; 'E~ 16z, we obtain with the help
of Egs.(2.6) and (3.5

8D, =8V, ES, E 1+ W E(5S,)E 1=®,E[y(=,7)

+y(k)M33]E " 16z=D EIIE 15z, (3.6

where

IV. ADIABATIC APPROXIMATION

As pointed out in Sec. Il, within the adiabatic approxima-
tion we should impos@ . =I", where[see Eq.(2.13]

ki 1=K
=1- =1+ . .
r=1 K P, T 1 K=k, P 4.7
This leads to the following expression for the matsikk)
(3.39:
* kl_kf
= -1 —
(k) 'f_xdTE {R(l P P
ki — k3 k=K
+ - . .
Kk, PRl 1 K P||E 4.2
Hence,

Resy(K).ky} =ik —ki) [ a7 B (kg PRO-PE(Ky)
4.3

and thez dependencé¢3.11) of zerok,; has the form

k12=2n{ J:dr PR(1-P) (4.4)

33
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Let us now explicitly obtain the value of the regular partwe obtain the corresponding equations for the quantities
¥:(K) at k=Kk;, because just this value enters the matrixn;, j=1,2, which describe the polarization state of the soli-

I1,(k,) involved in Eq.(3.10. It follows from Egs.(4.2) and
(4.3

r(k) =[ (k)= (k—ky) " *Regy(k),ki} Iy,

:if dr E"Y(ky)PR(1—P)E(k;)

kl_k;_c o [ kl_k1c
+i lim f dri E"Y(k)PR| 1— P
kg K K1 J oo k—Kk}

XE(k)—E (ky)PR(1—P)E(k;)

=j F dT{ E~1(ky)R(1—P)E(kq) + (ky—K¥)

—ElkPRl——l ’IP E(k
><(3’|( () k—kl ()k
1

=j f dr E"Y(k){R(1—P)+PRP—ir(k;—k})

X[A,PR(1-P)]}E(k). (4.5

Taking into account Eq(4.5 and rewriting by entries the
formula (3.10,

pi,=ik5p;— ¥ 17y, 3(Kky) p3,

P3z= —[iki+ ¥r33(k1) 1ps,

ton
Njz=[2ik3+ yraa(k) 1* nj— [€2%17yy5(ky) 1%
Hence it follows[compare with Eqs(2.17) and(2.18] that

[7rj3(kl)]* )
(4.6

n?z:[’}’rss(kl)]* n?_ eXF{Zi J'Zde?fz(Z)

where the possible perturbation-induceddependence of
k, is taken into account.

Therefore, to describe the parameters of a perturbed soli-
ton in the adiabatic approximation, it is necessary to solve
Egs. (4.4 and (4.6), provided the perturbation is a given
function of r andz. As an example, let us consider the per-
turbed Manakov system

i012+ 501, + (g ?+ |QZ|2)Q1:ile_iB|Q1|2C11,(4 7

i02,% 302, + (|02 2+ || ) a2 =1 €02~ 8| 02| a2,

wheree and g3 are small real parameters. This means that the
perturbation matrixR is given by

R=eQ-5Q°.

Depending on the signs of and B this perturbation de-
scribes the action of linear and nonlinear damping or gain
[34,35. For example, for positive and 8 the perturbation
(4.8) describes combined action of excess linear gain and
nonlinear damping.

We start with the evolution of zero, =&+ of the RH
problem. According to the formulas in Sec. Il we have

4.9

0,267 0O0,eY OFe? 0 0 0re'?
P=> 030,67V |0,)%7Y 0ie?|secly, eQ=-2ien| O 0  Oe?|secly,
0" B’ eY 0. 0,7 0
0 0 -07]|0,/%"¢
BQ3=-8iB7n° 0 0 - 0%]0,|%'? | sechy. (4.9)
0,/0,%7" 0,/0,% "¢ 0
|
Hence, according to Ed4.4) we find 16
3 4 4
1:=2€n= = B (|01*+]0,[%). (4.1

. 16 4 4
klz:2|€77_§|,37l (104]*+]0,%). (4.10

From Eq.(4.10 it follows that £,=0, i.e., in the adiabatic

approximation the velocity of the soliton is not affected by

the perturbation(4.8), while the amplituden satisfies the
equation

Now we turn to the other soliton parameters, i@,, ©,,
and a. Since they are expressed through the quant'rtfés
j=1,2, let us consider Eq4.6). From Egs.(4.5 and (4.9
we get

YraK) = — €+ 587%(|04*+]0,*)

and
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e 1, |@,=01
ex —2|j dzk | yyja(ky) , 3e s=d 1 1 41
, 77*_85ﬁ’ - é, |®l|:E ( . @
— — e(n9)* 1+2(a—4§f dzn>

provided the conditiore3>0 is satisfied. To consider the
) z stability of the stationary solutiony, , turn to the first of
CX +2(a—4§j dzﬂ) Egs. (4.15. For a small deviation\ » from the stationary
value we obtain the linearized equation

8
+ §/5’772(n?)*

4 4
X(104]*+]05]%), An,=—4eA .
where(z) is the solution of Eq(4.11). Therefore, Eq(4.6)

takes the form Hence, for positivee (and, due to the conditioa3>0, for

positive B) the stationary point;, is stable, otherwise it is
5 4 unstable. _ _ _ o _
a_4§f dzn) — _lgn2{|@j|2 Thus, the analysis of the adiabatic approximation gives
3 evidence of the existence of the stationary regimes of soliton
] propagation, with the perturbation of the fort#.8) deter-
np.

n%,=2

j €

+2 mining the only amplitudg4.16 of the stationary soliton.
This fact will be used in Sec. V for the calculation of cor-

(4.12 rections to the soliton shape.

z 1
aa¢ ["dzn- 3]0+ |049

Then the evolution equation fer, due to Eq(2.18), is writ- V. FIRST-ORDER APPROXIMATION: DISTORTION
ten as OF THE SOLITON SHAPE
z 8 Within the adiabatic approximation we find the
az=2( a—4§j dZ??) €~ 5,3772(|@1|4+ 1©,]*) perturbation-induced evolution of the soliton parameters, but
4.13 neglect a distortion of the soliton shape. Mathematically this
means that we dealt before with discrete spectral data only.
and, in virtue ij:n?efa, the evolution equation for Thatis the continuous part of spectral data which describes a
1@, is distortion of the soliton shape and possible emission of linear
waves by soliton.
104],= 2874 0,](]0,2—1)(|0,]2-3), (4.149 To take into account continuous spectral data we need to
drop the conditiorG=1 [and, as a consequenck®(k)=1]
while @, can be found from the identity used in Sec. Il. This necessitates the solution of the regular
|@4]2+|0@,/°=1. As for the phase ¢; of O, RH pro_blem(2.12). Indeed, we can write in the first-order
©;=|0;|e'¢i, we evidently havep;,=0 because the coeffi- approximation
cients in the Eq(4.12 are real valued. Thus, the evolution of 0 o)
parameters of the perturbed soliton within the adiabatic ap- P7=1+ 0™, 5.
proximation is described by the closed system of E4d.1), o) ; , o
(4.13, and (4.14. Standard analysis of the key equation vyhereCID is a first-order correction in respect to perturba-
(4.14 gives three stationary solutions f0®,|: |®@,[=0, ton. Then Egs(2.9) and(2.10 give
|®,/]=1/y2, and|®,|=1. From Eq.(4.14 it is also seen
that for 3>0 the stationary poirf®,| = 1/,/2 is the attractor
for the initial values of |®, subjected to inequality
0<|®4|<1, while for <0 the stationary point$0:|=0  \where the correction Q) has the form QW
and|®1_|=1 are the attractors for the initial values subjected_ _jim, _k[A,®° (T']. Now the matrixG which deter-
to the inequalities &|©4|<1/J2 and 142<|0,|<1, re-  mines the RH problem(2.12 also can be represented as
spectively. Similar results were obtained by Afanadjgs, G=1+GW, whereGW is of the first order. Therefore, the

who used amnsaz to derive equations for the soliton pa- reqyjar RH problem in the first-order approximation takes
rameters. It is essential that the rest equatichd) and  heo form

(4.13 also have a stationary point fay provided |®,| is
equal to one of the stationary points discussed above. Indeed, (®°) 1% =G=1+rcWr-1, (5.2
denotings=|0,]*+|®,|* we get

Q=—lmk[A,®.]=— limk[A,(1+ %M I]=Q.+Q",

k— o0 k— o0

. 5 The jump of the piecewise holomorphic functidf on the
n,=27(e=3B67°), real axis Ink=0 is expressed through the right-hand side of
Eq. (5.2

z
a,=2 a_4§f dzn|(e—5Bo7n%), (4.19 P -0 =p° G- p° =TI 1,

and the stationary poing, is given by The Plemelj formula gives
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o 1 (= 0 ) we can calculate the needed correction with the help of Egs.
P =1+ PP |_k(‘1> IGUr=1 (). (5.3  (5.4. Note that Eq(5.4a can be represented in more detalil
o provided the explicit expressioii4.1), (4.9), and Hermiticity

Selecting then irrbg, due to Eq.(5.1), the contribution of of G are taken into account, namely,
the first-order approximation we obtain from E§.3

_ in
(rGr 1>31=G<313+k_—kl®1<®ie<3?

1 (= dl
q>3<1>=ﬂf_mm(re<l>r—1)(|).

+®’§G(312))e‘ysecty— = k* G4y e'secly
Hence it follows that

7

o A 1)y @ (1)
Q= lim k[ Il f —Ik(re<l>r*1)(|)r(k) Rk (kg O 01Ga 0263
k— oo
(5.43 +(01(GH)* +0,(GS)*)e ?'?]sechy.
or, in view of the explicit expression fdr (4.1), (5.10

- The corresponding expression fol VT 1), follows
1>:_f dk[]“G(l)]“*l]aj ) (5.4b from Eq. (5.10 after the evident substitutior®,+ ®, and
)= G311+ Gg,. It follows from Eq. (5.10 that for y>1 it is
, ) , sufficient to consider the contribution of the first and third
Thus, to obtain the correction to the soliton shape we have Qs whereas for-y>1 the first and second ones contrib-
B l 1
calculate the mz(alt)mG( ). , _ ute. Considering separately the linear and nonlinear parts of
~The matrixG'™ can be calculated in the following Way. the perturbation4.8) we find the corresponding values of
Similar to @, [see Eq.(A3)] it is easy to show thad_ 73i(K), 73]-(k)EG)j_lexp[4ik§z—2i(§2+ P2 v5(K)
involved in the formulation of the RH proble(2.8) satisfies

the equation k=¢ m(k—§)
L 731 (k)= — emexp i —— | sec 5 ,
®~L=ik2AdD~1- - —EME 1P 1, 7 7

— 2
whereII(k) = —TI"(k*). Hence, it follows thatz evolution Y ()=~ 37B(k—ky) (k= K} {2|OJ|2 1+ —7])
of G reads k=ky
- e 2i k—
G,=ik’[A,G]+GEIE '~EE"!G. (5.5 —(10,]*+10,0%)| 1+ :* sec%{w(z 5)).
—KE 7

Now  introduce  the matrix Gg(k) =exp(—ikAr ] ) ] )
—ik2A2) Gexp(kAT+ik?A2) and take into account that the Inserting Erf)ese expressions in B§.7) and integrating orz
continuous spectrum of the RH problem corresponds to th#e get Gy )3 for both perturbations. Thereby, omitting for

real axis Ink=0. TherewithII(k) = —T17(k) and z>1 the fast oscillating exponent, we obtain from E5.9)
G — G e*iszZHeiszz_,’_ e*iszZHTeikZAZG . (56) (l) _ . 2+ 2\ g_a
0z= Go 0 Gyj'(e) 2(k—kl)(k—k’{)ex 2i(&+n7)z—i .

Recalling thatlI(k) is of the first order in respect to pertur- )
bation and having in mind the representat®g=1+G{", Xexr{ _ 5y)secy6 Tr(k—'g))’ (5.113
we write Eq.(5.6) in the first order as n 27

Gol,=e KA IT+ 11T el*A, &7 gw Lakiad (24 )z o

e S— + —_ —

J(B)= 3(k—k1)(k—k’1‘)ex 2i(&+n7)z—i .

Here
ik i 7
0 0 7y Xexr{—;y)[2|®j|2(1+—k_kl)
M+TI1t= 0 0 Y23 (5.8 2iy m(k—§)

~va —v: O _(|®1|4+|®2|4) o k—kfﬂsecyé 27 )
and we took into account that for kw0 in the first-order (5.11b

approximationy(k) satisfies the identity*;(k) = — y3.(k). _ _ o
Integrating Eq.(5.7) for 7;; determined in Eq.(4.2) and where in the case of the nonlinear perturbation, i.e., in Eq.

putting (5.11h, we ought to take fof®;| their asymptotic values in
accordance with the results of the adiabatic approximation in
(k) =expikA7+ik?Az)GVexp —ikAr—ik?AZ), Sec. IV. Now insert the obtained expressiof#s11) into

(5.9 Eq. (5.10 and integrate ork according to Eq(5.4b. All
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the integrals are easily calculated by means of residueshe Manakov system. It is important to stress that it is the
the contributions from the poleé+3in, é¢+5i7, etc., of Riemann-Hilbert ideology initiated many years ago for
sech7(k— £€)/27] being negligibly small as compared with studying the soliton equations by Zakharov, Shabat, Mana-
the contributions of the poles+i 5. Here, after simple cal- kov, and some others that turns out to be the best ground to
culations we get the corrections to the soliton shape fobuild an analytical approach for dealing with small perturba-
y>1 tions in soliton systems. It is evident that neither the Mana-
kov system nor the Zakharov-Shabat spectral problem ex-
haust the applicability of the presented formalism. Recently
it was proven 36] that the Riemann-Hilbert problem can be
successfully used to treat perturbed solitons of equations as-
sociated with theNX N matrix Zakharov-Shabat spectral
problem. Moreover, we developef37,3§ a Riemann-
Hilbert-based method to find soliton solutions for the modi-
fied Manakov system{a system of two coupled modified
nonlinear Shrdinger equationssolvable by the X 3 matrix
Wadati-Konno-Ichikawa spectral problem. The soliton per-

€ _ ié
qiY(e)=— 5®19XF{2'(§2+ 7)z= (y+a)

2

v
2y?+ —

X
6

eV, (5.129

, _
a;” ()= §ﬁn@jexp[2i<§2+ )2~ f(w @)

2

2, T 4 4 turbation theory for the modified Manakov system will be
x| 2y +€ 1)(|®1| +102]% present elsewhere.
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tained in Ref[30]. Now let us turn to the case of the joint

action of the two perturbations. Under the condition APPENDIX

eB>0, there exists the stationary regime of the soliton

propagation with the amplitude satisfying E¢.15. For ex- Here we derive the evolution equatiof&10 and(3.11)

ample, for positivee and 8 we simply ought to sum the two for _discrete spectral data. For simplicity consiqler the case of
a single zerd; of the RH problem. We start with the equa-

i 1 ith = =1/2 = f
corrections(5.12 with |©4=0,|=1/y2 and=r, from tion @ (k;)|p)=0 which is true irrespectively of the action

Eqg.(4.19. The resulting steady-state correction to the soliton / . L . . )
sr?a:)e rzads foy>1 9 4 of a perturbation. Differentiation of this equation gives

d
., (k) lp)+

z

d
P d—<1>+<k>)k p)=0. (A

N

[
exp[ 2i(&2+ n?)z— §(y+ a)|(1—2y)e V.
(5.133 Note thatz evolution of ® ,(k), in the case of action of a

Analogous simple calculations can be carried out forPerturbation, contains the additional tett6), i.e.,
—y>1. We obtain the following resulting steady-state cor-

rection to the soliton shape fory>1: ®,,=Vd, —ik?D A+ D TI, (A2)
L € . i& where[T=EIIE~! and the matrixII is determined in Eq.
9= N 21+ )zt (y=a)|(1+2y)e” (3.7. This gives
n
(5.13b

d d

JE— — + JR—

These expressions demonstrate that in the process of going to dzq)+(k) (2 (0]tks akq)Jr(k)

the stationary regiméfor € and B positive the two correc- 9

tions to the soliton shape partly compensate each other, :Vq>+—ik2q)+A+q>+ﬁ+kZ—q>+_

which results in mutual canceling out of the leading terms ok

with y? of the asymptoticg5.12). (A3)
For negativee and 8 the conditione3>0 also holds and

the stationary solutions ard®,/=1 (|®,/]=0) and In view of the explicit structuré3.8) of I, we introduce a

|®,]=0 (|]®,|]=1), which lead to doubling of the correc- new matrixII

tions (5.13. But in this case the stationary poimt, is un- _ . .

stable. M(k)=(k—k)II,(k)+ReqII(k),k;}, (A4)

VI. CONCLUSION hence

We have proposed a natural generalization of the Kaup- (ky)|p)=Reg (k) ki}|p).
Karpman-Maslov perturbation scheme which was elaborated
for soliton equations with X 2 matrix spectral problem, to Equation(A2) gives
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MNK)=d 10, ,+ik?A-—D VD,
and, @, =(k—ky)® 1,
(k)=®, &, ,+iki(k—k)A—D, VD, .

By virtue of ®  (k;)|p)=0 and Eq.(A4) the above formula
gives

M(ky)|p)=ReqTI(k),ki}[p)={®. (K[ P (K) ]} )
=(k— kl)z,k:kll p> == klzl p>-
Therefore, we obtain the important identity

ReqT1(k),ky}|p)= —ki|p),

which will be used below. EquatiofA1), with account of
Eq. (A3), takes the form

@, (ky)(|p),~ikIA[pY) + (@ (K)[IT,(K) + (k—ky)

(A5)

xReqI1(k), kit Dk, [P) +Kaz

d
w“”("))k p)=0.  (A®)

1

As @, (k;)ReqI1(k),k;} =0 in view of the existence of the
quantity @, 1), , we obtain

[® . (k—ky) " *Req1(K).ky} T |P)

((I)+(k)—CI)+(kl)
k—k,

k

1

(? A~
(%qh(k))k Req1I(k),k:}|p)

1

1p),

okl oo
=kl @+ 09|
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where during the last stage we used &6). Now it is seen
that this term is canceled with the last term in E6),
which gives

@ (ky)(|p),— ikIA|p)+11,(k;)|p)) =0.

Because of the identities djikerd (k;)]=1 and
cD+(k1)Res{f[(k),k1}=0, we obtain the perturbation-
inducedz-evolution equation for the vectdp)
P =ikiAlp)—E(K)ILE M (kplp), (A7)
where ad1(k) we may take its asymptotic expressit$9).
Now turn to the z evolution of zero k;. As

detd, (k)=0(k—k;) for k—kq, it follows from the evident
expressiord/dZ detd +(k)]k1= 0 that

[ dew.. (1,

1z— J
ﬁdeﬂu(k) )
1

Taking into accounfdet® , (k) ],=[trTII(k) JdetP , (k) and

det® (k)= (k—k;)detd® (k), detb?(k)+0,
we get
T, (k) + (k= K} ) ~*RegI1(k),k;}]detdS (k)
kip= = lim === k—k; 7 k—k;
k*)kl . 0 0 .
Lkdem(k) = +detb? (k) - =

Res{trfl(k) K1} =—Reqys3(k),ki},

i.e., Eq.(3.11).
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